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ABSTRACT

Given the complexity of the problem, genetic algorithms are
one of the more promising methods of discovering control
schemes for soft robotics. Since physically embodied evolu-
tion is time consuming and expensive, an outstanding chal-
lenge lies in developing fast and suitably realistic simulations
in which to evolve soft robot gaits. We describe two parallel
methods of using NVidia’s PhysX, a hardware-accelerated
(GPGPU) physics engine, in order to evolve and optimize
soft bodied gaits. The first method involves the evolution
of open-loop gaits using a reduced-order lumped parame-
ter model. The second method involves harnessing PhysX’s
soft-bodied material simulation capabilites. In each case we
discuss the the challenges and possibilities involved in using
the PhysX for evolutionary soft robotics.

Categories and Subject Descriptors
1.2.9 [Robotics]:

General Terms

Design, Standardization, Verification

Keywords
PhysX, soft robot, caterpillar

1. INTRODUCTION

Imagine a robot that can squeeze through holes, climb
up walls, and flow around obstacles. Thanks to modern
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advances in materials such as polymers [2], and nanocom-
posites [1] such a “soft robot” is becoming an increasing pos-
sibility. This ability to significantly deform and alter shape,
at a much higher level of detail than discrete “modular”
robots (such as Yim’s Polybot [6] and Rus’s Molecubes [3])
makes accessable new and increasingly important environ-
ments such as mine fields and collapsed buildings.

However, this incredible flexibility and deformability brings
with it considerable complexity when it comes to control.
Soft bodied robots can posess near-infinite degrees of free-
dom, and as a result conventional methods of robotic con-
trol, used with considerable success in rigid, jointed mechan-
ical systems, no longer apply. Furthermore, the dynamics of
these systems are complex enough that efforts to intuitively
hand-design control schemes also come up short. The com-
plexity of the problem, coupled with the non-intuitive nature
of solutions, makes the control of soft robotics well suited to
search via genetic algorithms.

Evolutionary optimization of robotic gaits by nature re-
quires high-fidelity simulations, which can be quite compu-
tationally intensive. Given that thousands, if not millions, of
evaluations are required to evolve highly-fit solutions, sim-
ulation is often the bottleneck on the road to progress. A
conflict therefore exists between the fidelity of simulation
and the speed at which at which that simulation runs.

In this paper we describe approaches to soft-bodied robotic
simulation which harness general purpose computing on graph-
ics processing units (GPGPU) in order to produce hardware-
accellerated simulations without significant losses in fidelity.
In particular, we use NVidia’s PhysX physics engine, which
runs on top of the CUDA GPGPU architecture, in order to
arrive at simulations which are orders-of-magnitude faster
than software-only simulation. In our first approach, we
evolve fixed gait cycles using a lumped element reduced or-
der model of a soft robot. In our second approach we employ
PhysX’s soft-bodied simulation features in order to evolve
gaits in a truly soft system.

2. LUMPED DYNAMIC MODELING

Lumped Dynamic Modeling is a method which reduces



a soft-bodied robot to a set of rigid bodies connected by
linear and torsional springs. This allows for the simulation
of highly deformable robotic structures such soft robots,in
a much more computationally efficient manner than contin-
uum models such as Finite Element Analysis (FEA). Al-
though not as accurate as continuum methods in resolving a
soft robot’s internal forces, lumped dynamic simulation are
sufficient to capture the underlying physical phenomena of
soft-bodied robots.

2.1 Implementation Details

The lumped approximation of a soft robot consists of two
steps: (1) qualitative identification of the modes of defor-
mation that contribute to robot motion and (2) decomposi-
tion of the robot structure into a set of rigid bodies, joints,
and internal forces that reproduce those modes. In practice,
the two steps are closely related. Parts identified as de-
formable are decomposed into multiple segments, which are
constrained by joints to move in the direction of deformation
(translational or rotational).

A natural method for decomposing a soft structure into
rigid segments is to begin by identifying flexures in a robot
body. Since bending occurs most readily at these flexures,
flexure locations are naturally represented as joints in the
lumped model (an example seen in Figure 1). Additional
joints can be introduced to represent internal deformations
within segments of a soft body. Here segments are defined as
sections of the robot body between flexures. In a qualitative
sense, these deformations can be modeled by subdividing
each body segment into two rigid sub-segments connected
by a prismatic joint (to enable compression and extension)
coincident with a spherical joint (to enable bending and
twisting). Relative motion of the two rigid sub-segments
provides a first-order representation for deformation of the
soft segment. To enable compression, adjacent segments are
allowed to interpenetrate if connected by a joint. Otherwise,
when segments contact each other or the ground, collisions
are resolved using a coefficient of restitution model.

Internal stiffness is implemented for the lumped dynamic
model by applying linear visco-elastic forcing at the joints.
Linear and rotational dampers can also placed at each joint,
and damping coefficients are generally estimated assuming
critical damping. Stiffness parameters can be estimated by
applying finite element processing to a 3-D CAD model of
actual hardware, or evolved via a genetic algorithm.

External forces acting on the lumped dynamic model in-
clude gravity, friction, and actuator forces. Gravity is gen-
erally defined to act perpendicular to the ground plane.
Friction is modeled with Coulomb friction coefficients. A
number of actuators can be implemented onto a soft robot
lumped dynamic model. For example, pneumatic actuators
can be modeled with a periodic control signal for actuation.
Control commands can be allowed to turn the pneumatic ac-
tuators on and off at particular times during a gait period.
Actuator attachment points can be defined for each pneu-
matic cylinder, and the actuator forces can be simulated to
act along the line between these points. A restorative spring
can also be applied between the actuator attachment points
to mimic return springs in the pneumatic piston hardware.
The minimum and maximum distance constraints between
actuator attachment points can also be implemented with
prismatic joints. When an actuator is turned on it can pro-
duce a constant force and extend until it hits the maxi-

Figure 2: The pneumatic robot used for Lumped
Parameter Modeling

mum displacement length. Upon the actuator turning off
the restorative spring can take the actuator back to its ini-
tial minimum length. Other actuators can be implemented
in lumped dynamic models in a similar manner.

2.2 Evolution of Morphology and Control

Genetic algorithms and PhysXI' are the two primary soft-
ware tools leveraging the lumped dynamic modeling method
to optimize soft robot morphologies and control patterns.
PhysXI is used to model the response of a system to actua-
tion and evaluate the performance of a designated soft robot
in an efficient manner. In order to simulate robot motion
using PhysXIl', lumped parameters describing the robotOs
design (actors, joints, and materials) must be provided. Ac-
cordingly, inputs are specified in the form of a genotype
describing all physical and control parameters necessary to
create and control a soft robot in simulation. These geno-
types are evolved by a genetic algorithm to obtain high levels
of simulated robot performance (fitness).

The remainder of this section will describe the evolution
of controls for a pneumatic robot and control implemen-
tation on prototype hardware, as shown in Figure 2 . The
pneumatic robot body was divided into segments and the re-
lationships between those segments were defined by a com-
bination of constraints and visco-elastic forces, and pneu-
matic actuators were modeled as described in the previous
section. The resulting reduced order model deformed in a
manner characteristic of the soft-robot.

For the evolutionary optimization, the fitness metric was
distance traveled per gait period. The duration of the peri-
odic gait as well as the activation and deactivation times for
each pneumatic actuator were the units of genetic variation.
Each GA run consisted of 150 generations with a population
size of 200 members. For each generation an elitist hall of
fame of the top 10 genotypes was preserved without crossing
or mutation. The remaining 190 genotypes in each new gen-
eration were randomly created using a OrouletteO method
of selection, crossing, and mutating. After 150 generations
the top performers included a variety of different gait peri-
ods with similar fitness values.
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Figure 1: Illustration of the Lumped Parameter Model of a soft robot
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Figure 3: Simulated (predicted) vs Physical (actual)
horizontal displacement for the evolved gait.

2.3 \Validation of Evolved Results

Evolved control schemes were then validated on the phys-
ical pneumatic robot. Ten of the best genotypes in the fi-
nal generation were chosen for evaluation. As a preliminary
check, a qualitative visual comparison was performed. As
predicted in simulation, all the tested gait patterns moved
forward on the physical hardware as well

Three quantitative studies were then performed to as-
sess the accuracy of the lumped dynamic model. The first
study considered all ten gaits and compared travel distances
achieved by the prototype hardware to those predicted by
simulation. A second study compared motion capture mea-
surements to the simulated gait kinematics for a trio of gaits.
The final quantitative study considered the effect of gait du-
ration on hardware performance for the same trio of repre-
sentative gaits.

For the first quantitative study, which compared predicted
to actual travel distances, the range of actual distance trav-
eled was between 11 and 74 percent of the simulated dis-
tance, considering all outliers. The mean distance ratio for
fifty tests was 35 percent. Mean values for individual gaits
were close to this 35 percent level, demonstrating consis-
tency in the error of the simulated travel distance.

The second quantitative study used motion capture data
to enable a more resolved comparison of the kinematics for
the actual and simulated robots. For this experiment, only
three gait patterns were considered. A VICONT system was
used to track six markers on the hardware. The mark-
ers were attached to the top of the robot prototype, with
matching locations also tracked in the simulation. The point
tracking experiments showed a close correlation between the
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Figure 4: Simulated (predicted) vs Physical (actual)
vertical displacement for an evolved gait.

timing of specific movements for the experimental and sim-
ulated pneumatic robot. Results for one gait pattern are
illustrated in Figures 3 and 4. Similar results were obtained
for all three gait patterns tested. Figure 4 plots vertical (y)
displacement, and Figure 4 plots horizontal (x) displacement
as a function of time. In the figures, the simulated motion
is solid black while the hardwareOs motion is a dashed line.

The final qualitative analysis evaluated the impact of gait
period on robot speed for each of the evolved actuation pat-
terns. These tests were performed to assess how closely the
evolved actuation patterns were matched to the specific mor-
phology of the hardware prototype. For these tests, only the
overall duration of the gait period was altered. Actuators
were always activated or deactivated at the same percentage
gait period. In these tests, it was observed that the distance
traveled by the robot hardware was adversely affected as the
gait period deviated from the optimal evolved location. Fig-
ure 5 shows distances achieved per gait cycle as a function
of gait duration. It is clear that the evolved gait period is
optimal for each case tested.

The experimental results indicated that there is close cou-
pling between evolved gait periods and the performance of
the soft-robot hardware. The fact that robot distance trav-
eled per gait period is maximized at a particular gait dura-
tion indicates that the motion is not quasi-static and that
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Figure 5: As the speed of the gait is sped up or
slowed down relative to the evolved speed, the dis-
tance covered by the robot is significantly dimin-
ished. This suggests a tight coupling between the
dynamics of the system and the evolved solution.

dynamics play an important role in gait performance. More-
over, the dramatic decrease in performance away from the
evolved gait period, as shown in Figure 5, provides clear evi-
dence that the lumped dynamic model simulation in PhysXT’
captured the system dynamics well enough to enable ef-
fective gait optimization with a genetic algorithm. In this
sense, the lumped dynamic model appears to be an effective
method for modeling certain soft-robot gaits. The effective-
ness of the lumped dynamic model in simulating the robot
dynamics is also supported by the motion capture data, since
the motion capture trends closely match the trends predicted
by the simulation.

3. SOFT-BODIED MODELING

The lumped parameter modeling described above has achieved

considerable results, but there is a hidden cost to the pro-
cess, in that considerable human knowledge is required to
hand-code the parameters of the reduced model. As design-
ers develop new body shapes, new models must be derived
from scratch. The alternative described in the section below
is to directly model the entire soft-bodied robot, without an
intermediate reduced-order stage.

PhysX is unique among off-the-shelf physics simulators for
its ability to simulate cloth and soft bodies. This makes it
particularly well suited for the direct simulation of soft bod-
ies, without the intermediate step of hand-coding a reduced
order lumped parameter model.

3.1 Quantification of Soft Bodied Character-
Istics

PhysX treats soft bodies as tetrahedral meshes with two
principal variable characteristics: stiffness and damping. The
details of these numbers are incredibly poorly documented,
and so our first task was to attempt to characterize these
numbers in real world terms. In order to to this we gener-
ated three soft bodied sheets with known dimensions, and
performed stretching experiments by fixing the top edge of
the sheet and attaching a weight to the bottom edge. By
varying the stiffness and damping values we were able to
a) affirm that simulated soft bodies behave quite similarly
to their physical counterparts, and b) quantify the effect
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Figure 6: Change in length over time of a
0.5x5x20cm sample with a 10 gram weight hanging
from it

of variable stiffness and damping ratios in order to com-
pare them to known properties of actual materials. Figure 6
shows the change in length over time of a representative
sample.

Figures 7 illustrates a linear response in the final rest-
ing length of the 0.5x5x20cm, 0.5x10x20cm and 0.5x5x30cm
systems across a range of stiffness values between 0.0 and
1.0 and a range of vertex counts. As would be expected in
a corresponding physical system, as the width of the strip
doubles the change in length halves, and as the length of the
strip increases by 50%, so does the change in length. Un-
like the stretching results above, these show a slightly less
coherent response.

The results above are comforting, in the sense that we
have validated that the simulated system behaves as one ex-
pects a physical system to. To the extent that there are
deviations of expected behavior, such as in the final subfig-
ure of Figure 7, we suspect it is due to “boundary conditions”
which occur at particularly low verex counts. We have yet to
fully analyze the data for damping coefficients of the system,
but are optimistic that similar behavior will be found. This
latter will be especially important in the sense that we want
our evolved gaits to be highly dynamic, and so fidelity not
only to soft-bodied steady state behavior, but to dynamical
responses will be highly critical.

3.2 Evolution of Soft-Bodied Gaits

Armed with these quantitative values, we can now with
some confidence create a soft bodied simulation with physi-
cal characteristics similar to those of the silicone elastomer
used to construct the physical robots.

To perform this evolution, a three-dimensional CAD de-
sign was created using SolidWorks and then converted into
the OBJ/TET format required by PhysX. Stiffness values
from the validion experiments above were then chosen to
most closely model the characteristics of the silicone elas-
tomer used to create the physical soft bodied robot.

The physical and simulated robots used for this experi-
ment are shown in Figure 8. Unlike the pneumatic robot
in the above section, this soft robot is actuated by a total
of sixteen SMA “muslce wires” attached between adjecent
segments - eight along the top and bottom of each side.

We chose to use Spiking Neural Networks (SNNs) as con-
trollers, since unlike more conventional ANNs they are able
to alter their timing and as a result capture and exploit
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Figure 7: Change in length over varying soft body
stiffness values for three different samples, all with
a 10g weight.

dynamical properties of systems. Spiking neural networks
(SNNs) were developed to model more continuous processes:
input and outputs are both represented as single-value spikes
(as opposed the sigmoid outputs of a conventional ANN) [4].
Instead of a sigmoid function, every SNN node contains a
simple persistent counter, with adjustable offset and limit.
At every time step, an SNN node sums its weighted inputs
with the current counter value, and if the sum surpasses the
limit the node fires a single “spike” to its output; otherwise
the contents of the counter are decremented by a fixed decay
rate, and persist until the next time step.

In an effort to achieve a non-centralized and highly dy-
namic gait akin to earlier SNN-based tensegrity robots [5],
we also chose a distributed modular approach in which each
muscle is controlled by a single independant SNN with only
four inputs - corresponding to the length of the affected mus-
cle as well as well as the three adjecent muscles in the in-
tersegmental group, as illustrated by Figure 9. At every
simulation time step, each muscle controller measures its
inputs and feeds them through the SNN. Output spikes are
converted into string actuations by measuring the duty cycle
of network spikes. Any spike rate above 30% over a 100 step
period is considered “active”, and the corresponding muscle
is ativated. Our choice of relatively simple binary actuation
in this regard is an effort to simplify overall control, and

Figure 8: The physical robot (above), and the cor-
responding PhysX model. The model was produced
by transforming a CAD file into the OBJ/TET for-
mat used by PhysX.
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Figure 9: Schematic of Spiking Neural Network
(SNN) organization in the simulated soft robot

to reduce the difficulty in translating simulated results into
actuation values for the SMA wires.

The weights of all 16 SNNs on the robot where then en-
coded into single linear genotype for evolutionary manip-
ulation. Genotypes were then evaluated by placing them
within the simulated robot and measuring positive x-axis
displacement of the leading edge of the robot in the over
3000 time steps. This is by some measures a challenging fit-
ness function, since any solution which begins by contract-
ing the leading segment muscles will pull the leading edge
inwards, resulting in negative fitness.

A representative evolved gait is best seen on the author’s
web page (www.tufts.edu/ jrieff01/). It is worth noting that
the evolved gait consists of both retrograde vertical waves,
much like the caterpillar which we used as inspiration for this
robot, as well as much less expected horizontal waves which
cause bipedal motion in the leading segment. This bipedal
motion emerges because we have placed to axis-symmetric
constraints on the muscle controllers.



4. DISCUSSION

PhysX is a frustratingly cryptic system. The documen-
tation for the product is sparse, and the online support is
practically nonexistent. Nonetheless, its ability to simulate
soft materials, combined with its support for hardware ac-
celleration, make in a compelling platform for the simulation
and evolution of soft bodied robots.

As mentioned earlier, the primary advantage of PhysX,
aside from its ability to model soft materiels, lies in its ability
to be accellerated thru GPGPU on high-end NVidia graphics
cards. This accelleration has borne out in our experiments,
and this has certainly been a boon to our evolutionary ex-
periments. On a 2.8GHz Intel Xeon platform with 8GB
of RAM and dual SLI NVidia 9800GT video cards, hard-
ware accelleration provides a 10-50 fold increase in speed,
depending upon the number of vertexes in the soft body.
This translates into evolutionary runs which unfold over the
course of a day or two rather than a week or two, leading to
significantly faster turnaround times.

An incredible amount of work remains before we can be
certain that PhysX is a viable tool for soft bodied evolution-
ary robotics, but the results are quite promising. We hope
that in the work described above we have provided fellow
researchers with some insight into the challenges and possili-
bities which can emerge from using GPGPU-enabled physics
engines to perform evolutionary soft robotics research.
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